A Z-basis for the Cluster Algebra Associated to an Affine Quiver

نویسندگان

  • MING DING
  • JIE XIAO
  • FAN XU
چکیده

The canonical bases of cluster algebras of finite types and rank 2 are given explicitly in [4] and [14] respectively. In this paper, we will deduce Z-bases for cluster algebras for affine types e An,n, e D and e E. Moreover, we give an inductive formula for computing the multiplication between two generalized cluster variables associated to objects in a tube.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

Bases of the Quantum Cluster Algebra of the Kronecker Quiver

We construct bar-invariant Z[q 1 2 ]−bases of the quantum cluster algebra of the Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the cluster algebra of the Kronecker quiver in the sense of [14],[4] and [11] respectively. As a byproduct, we prove the positivity of the elements in these bases.

متن کامل

Quiver Varieties and Finite Dimensional Representations of Quantum Affine Algebras

Introduction 145 1. Quantum affine algebra 150 2. Quiver variety 155 3. Stratification of M0 163 4. Fixed point subvariety 167 5. Hecke correspondence and induction of quiver varieties 169 6. Equivariant K-theory 174 7. Freeness 178 8. Convolution 185 9. A homomorphism Uq(Lg)→ KGw×C ∗ (Z(w))⊗Z[q,q−1] Q(q) 192 10. Relations (I) 194 11. Relations (II) 202 12. Integral structure 214 13. Standard m...

متن کامل

On the Cluster Multiplication Theorem for Acyclic Cluster Algebras

In [3] and [13], the authors proved the cluster multiplication theorems for finite type and affine type. We generalize their results and prove the cluster multiplication theorem for arbitrary type by using the properties of 2–Calabi–Yau (Auslander–Reiten formula) and high order associativity. Introduction Cluster algebras were introduced by Fomin and Zelevinsky in [9]. By definition, the cluste...

متن کامل

A parameterization of the canonical bases of affine modified quantized enveloping algebras

For symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the modified quantized enveloping algebra U̇(g) and its canonical basis in [12]. In this paper, for finite and affine type symmetric Lie algebra g we define a set which depend only on the root category and prove that there is a bijection between the set and the canonical basis of U̇(g), where the root category is the T -orbit category ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008